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Kinetics of shape equilibration for two dimensional islands
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Abstract. We study the relaxation to equilibrium of two dimensional islands containing up to 20 000 atoms
by Kinetic Monte Carlo simulations. We find that the commonly assumed relaxation mechanism - curvature-
driven relaxation via atom diffusion - cannot explain the results obtained at low temperatures, where the
island edges consist in large facets. Specifically, our simulations show that the exponent characterizing
the dependence of the equilibration time on the island size is different at high and low temperatures, in
contradiction with the above cited assumptions. Instead, we propose that - at low temperatures - the
relaxation is limited by the nucleation of new atomic rows on the large facets: this allows us to explain
both the activation energy and the island size dependence of the equilibration time.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 82.65.Dp Thermodynamics of surfaces
and interfaces – 68.55.-a Thin film structure and morphology

1 Introduction

There is a continued interest in the understanding, de-
scription and control of structures at the nanometer
scales [1–7]. This is partially due to technological appli-
cations of nanostructures, and partially to the fundamen-
tal interest of understanding how macroscopic concepts
can (or cannot) be extrapolated down to these scales.
On the technological side, a controlled preparation and
conservation of these structures demands a comprehen-
sion of their time evolution, which could be rapid due
to the small scales involved (typical structures contain
some hundred atoms). From the fundamental point of
view, it is interesting to investigate how the theoretical
tools which have been developed to deal with the kinetic
evolution of macroscopic objects (size larger than a mi-
crometer) by Herring, Mullins and Nichols [8], which are
based on coarse-grained, continuous equation, can be used
at the nanometer scale. For example, one could wonder
whether sintering of ceramic or metallic nanopowders can
be analyzed with these classic tools since it is not clear
that macroscopic concepts such as curvature, chemical
potential, etc. should retain their relevance when dealing
with structures containing only few atoms.

Here, we focus in the dynamics of equilibration of
two dimensional (2D) nanocrystallites starting in an
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out of equilibrium shape. Mullins’ theory of shape re-
laxation is based on the curvature being well defined.
Then, two questions arise. Can one use partial dif-
ferential equations to study the shape relaxation of
faceted nanocrystals? Can one use them at all far from
the thermodynamic limit — i.e. for small crystallites?
Studying the validity of the partial differential equa-
tions approach at various length scales and tempera-
tures is important since this formalism is also used
by experimentalists to derive diffusion constants [9,10]
or interpret their data [11]. Some workers [12,13] have also
used this approach as a black box to calculate the time
evolution of different structures. Our study is related to
one of the major problems of equilibrium surface physics:
the comprehension of the relaxation of a perturbed surface
profile, below its roughening temperature TR [14]. Above
TR, the surface (of an infinite volume crystal whose ratio
surface area/volume is finite) is rough. This is equivalent
to say that the step free energy vanishes identically (steps
can be created at no free energy cost), and it also im-
plies that the surface free energy is an analytic function
of the local slope. Below TR the surface is smooth. This
means that the step free energy is non-vanishing, and that
the surface free energy is non-analytic. Indeed, below TR

the surface free energy displays cusps at particular ori-
entations, which coincide with facets in the equilibrium
shape. In the thermodynamic limit, the chemical potential
of a crystal is defined from the Gibbs-Thomson relation,
µ = ΩK, in terms of the surface crystal curvature K.
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On facets, the curvature is ill-defined, and the chemical
potential is fixed by the curved part surrounding the facet.
For the relaxation of a 2D surface (the surface of a bulk
crystal), it is generally believed that Mullins’ treatment
is correct above TR. Below this temperature, different ap-
proaches have been proposed [15].

Molecular dynamics (MD) simulations of the coales-
cence of three-dimensional clusters containing roughly
1000 atoms, have shown that the relaxation kinetics is
slower than predicted by Mullins’ theory [17]. However,
MD simulations are still limited in computation time (no
more than ∼ 10 ns) and it is therefore difficult to follow
the coalescence at temperatures not too close to the melt-
ing temperature (see also [4,6]). An alternative method
consists in using Kinetic Monte Carlo (KMC) simulations
which allow an incomparable larger range of time stud-
ies. As a first attempt, we have chosen to study a two-
dimensional (2D) system, namely the relaxation kinetics
of 2D faceted islands supported on a triangular lattice.

The basic idea is the following: we start with a island
with a shape clearly not an equilibrium one (e.g. with
an x side 10 times longer than the y side) and anneal
it at a given temperature. Indeed, the perimeter free en-
ergy dictates the equilibrium shape, which is the one that
minimizes the island free energy at given volume (here
we expect hexagonal shapes because of the lattice geom-
etry). We assume that the island has relaxed when the
aspect ratio (defined as the ratio of the x and y gyra-
tion radii, α = ρx/ρy) becomes 1. We then monitor the
kinetics of the relaxation process, which depends on the
precise pathway chosen by the island to change its shape.
We are particularly interested in the influence of facets in
the relaxation kinetics. For this reason, we perform sim-
ulations at several temperatures: at high temperatures,
where the islands contour is clearly rough and only small
facets can be distinguished; at low temperatures, where
clear-cut and persistent facets are apparent. This point is
quite delicate, because a 2D object — whose contour is a
line, not a surface — is not expected to show facets at any
temperature in the thermodynamic limit. Indeed, a line is
rough at all non-zero temperatures, and the line tension
γ(Jm−1) is analytic for all orientations [14]. However,
facets do appear at T = 0, and at low T one would expect
the persistence length of a facet (the average distance be-
tween kinks) to be quite large. If it is larger than the island
side, then facets are indeed expected, as we observe. In
other words, creating a kink costs a finite energy, which is
always compensated by the entropy gain when the length
of the line goes to infinity (cf. Landau’s argument for the
non-existence of phase transitions in 1D). As long as the
line is finite, facets occur. One could then guess that they
affect the kinetics, even for T > TR = 0.

Our main conclusion is that equilibration of an island’s
shape is a non-universal process, in which the time evolu-
tion of the shape does not obey scaling, while it strongly
depends on temperature, and thus on system-dependent
features like the energy scale E. Scaling relations can be
found for the relaxation (or equilibration) time, as a func-
tion of temperature and island size. Indeed, two regimes
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Fig. 1. Potential energy of an atom diffusing along the island
edge when it has 1 (energy: −E/10), 2 (energy: −2E) or 3 (en-
ergy: −3E) neighbors. The atom energy is supposed to depend
only on the number of first neighbors and the transition state
is assumed to lie at the same energy for all jumps, taken here
as the origin of energies. As a consequence, the energy barriers
for diffusion are equal to the potential energies of the atoms,
ensuring detailed balance (see text).

with two different scaling forms are born out by the
simulations, at high and low T , respectively. We tenta-
tively attribute these two regimes to the absence and pres-
ence of facets, respectively.

2 Monte Carlo and partial differential
equation approach

2.1 Kinetic Monte Carlo simulations

We perform “standard” kinetic Monte Carlo (KMC) sim-
ulations on a triangular lattice. We assume that the po-
tential energy of an atom is proportional to its number of
neighbors, and that the kinetic barrier for diffusion is also
proportional to the number of initial neighbors, regardless
of the final number of neighbors, i.e. after the jump (see
Fig. 1). This is of course a huge simplification, which is
however aimed here at describing the global evolution of
a model island. In other words, we do not wish to study
any particular system but rather to investigate proper-
ties which should not depend on the details of atom-atom
interaction. Therefore, we use a simple kinetic model con-
taining as few parameters as possible (only one, the ra-
tio E/kBT where E sets the energy scale (E = 0.1 eV
throughout the paper), kB is the Boltzmann constant
and T the absolute temperature). Comparing with recent
ab initio calculations [16] for the Al(111) surface, we note
that our one-barrier assumption does give the good order
of magnitude of the relative jump frequencies for the dif-
ferent hopping processes of interest here. We also exclude
any explicit “Ehrlich-Schwoebel” barrier [18] for atoms
hopping around corners, although the occurrence of atoms
with a single neighbor is treated in a special way (see be-
low). The kinetic barriers for some jumps are shown in
Figure 2. In the same spirit as ours, a similar but slightly
more complicated model has been used recently by Metiu’s
group with the scope of obtaining system-independent in-
formation on island diffusion on a surface: these authors
investigate the existence of a “universal” size dependence
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Fig. 2. Examples of activation energies for different atomic
jumps on the island edge. Note that detachment of atoms from
the island is explicitly forbidden in the simulations.

of the island diffusion constant. They conclude that such
universality is not observed, and we observe a similar phe-
nomenon for island equilibration.

The time evolution of the island shape is obtained by
the following algorithm. We first calculate the following
quantities: δ1 = exp[−E/(10kBT )], δ2 = exp[−2E/(kBT )]
and δ3 = exp[−3E/(kBT )] which represent the relative
weights for the jump probabilities for atoms with respec-
tively 1, 2 or 3 neighbors (atoms with more neighbors sim-
ply do not move: see an explanation of the precise forms
of the different δi below). Then, in each iteration, we cal-
culate the probability to move an atom with i neighbors
as:

pi =
(6− i)niδi∑3
i=1 (6− i)niδi

, (2.1)

where ni is the total number of atoms having i neighbors.
We choose randomly one of the atoms with the appropri-
ate number of neighbors and move it in a random direc-
tion. The time is increased at each iteration by

dt =

(
ν0

3∑
i=1

(6− i)niδi

)−1

(2.2)

where ν0 is a Debye frequency (we have taken ν0 =
1013 s−1). To check that the law of detailed balance is
satisfied, one can refer to Figure 1: the probability for an
atom to jump from a site having n neighbors to a site hav-
ing p neighbors is δn while the opposite transition has a
probability δp. Their ratio is δn/δn = exp(−E/(kBT )(n−
p)), i.e. equal to the energy difference of the initial and
final configurations, as required by the law of detailed
balance (the particular case when n or p is equal to 1
can be analyzed in the same way). This algorithm is very
fast [19–21] since all iterations contribute to the evolu-
tion (there are no rejected moves). One peculiarity of this
model is the treatment of atoms having one single neigh-
bor: δ1 is much larger than what one could expect from
the general rule δn = exp[−nE/(kBT )]: indeed, we let
δ1 = exp[−E/(10kBT )] instead of δ1 = exp[−E/(kBT )].
This is to ensure that singly-bonded atoms, which are in
some sense in a “transition state”, rapidly go into some
physically reasonable position, i.e. one having 2 or more
neighbors. Note also that detachment of atoms from the
islands is forbidden here: equilibration is only due to mass

transport along the island contour. This is clearly differ-
ent from Ostwald ripening where islands evolve in equilib-
rium with a two-dimensional adatom gas. We note that a
recent experimental study by Stoldt et al. [22] has shown
that supported Ag two dimensional islands do indeed re-
lax via atomic diffusion on the island edge, without signif-
icant contribution from exchange with a two-dimensional
adatom gas. A last remark on the algorithm used here: we
do not allow atoms having more than 3 neighbors to move.
In some sense, they have an infinite potential energy. Since
our potential energy is not very realistic anyway, this hy-
pothesis allows to simplify and accelerate the simulations.
The key point is that our results are particularly interest-
ing at low temperatures, where including the possibility
for atoms with 4 neighbors to jump would make no signif-
icant difference in the kinetic evolution of the island be-
cause at these temperatures their jumping is vanishingly
small.

2.2 Partial differential equation approach

A complementary approach at predicting the evolution of
a crystal shape at a temperature higher than the roughen-
ing transition, consists in coarse-graining the crystal pro-
file, in order to treat it as a smooth function h(x, t), and
in writing down its time evolution in the form of a partial
differential equation, whose form depends on the physical
situation of interest. The situation when matter transport
is assured by adatom diffusion along the surface, has been
originally considered by Mullins and coworkers [8], for
studying small deformations of an infinite planar surface.
The case of a finite, closed “surface” — the island contour
— is somewhat more subtle, and we give the derivation in
some detail. The evolution equation has in general then
the form of an equation for s the curvilinear coordinate
or arclength. On purely geometrical grounds, it can be
shown [23] that this equation can be written as an evolu-
tion equation for the curvature K(s, t), of the form

∂K

∂t
= −

[
∂2

∂s2
+K2

]
vn −

∂K

∂s

∫
ds′Kvn (2.3)

where vn is the normal velocity of the interface. The latter
is fixed by the physics of the problem. In our case, when
edge diffusion is the relevant physical process determining
the relaxation of the shape, the equation for vn must have
the form of a conservation equation for the island area

vn = − ∂j
∂s
· (2.4)

The edge diffusion current j is given by the gradient of the
local excess chemical potential as in Fick’s law:

j = − D̃

kBT

∂∆µ

∂s
(2.5)

where D̃ is a (collective) perimeter diffusion coefficient.
The excess chemical potential is in turn related to

the local curvature K(s) through the Gibbs-Thomson
relation:

∆µ = −γa2K (2.6)
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where γ is the line tension (that for simplicity is assumed
isotropic here), and a the depth of the outer layer within
which mass transport takes place (one lattice spacing in
our case). Equations (2.5, 2.6) yield

j = −D̃γa
kBT

∂K

∂s
(2.7)

and the corresponding evolution equation (2.4) is given,
in our two-dimensional situation, by:

vn =
D̃γa4

kBT

∂2K

∂s2
· (2.8)

Equations (2.3, 2.8) must be solved simultaneously for
the island shape: the results will be shown in Sec-
tion 3.4. The equilibrium solution vn = 0 obviously is a
constant-curvature shape, that is a circle. Also, note that
equations (2.3, 2.8) are invariant by a rescaling s → λs,
t → λ4t [8], so that the equilibration time of a deformed
island of size L is expected to be proportional to L4 or N2

where N is the number of atoms in the island.

3 Monte Carlo simulation results

To study the influence of the facets on the coalescence
kinetics, it is interesting to study the time evolution of
the aspect ratio and the size, as well as the temperature
dependence of the equilibration time teq. We recall that
teq is defined as the time needed for the island to reach
its equilibrium shape. In practice, we take teq as the first
time when the aspect ratio α defined above becomes less
than 1. Each point is the average of several runs (up to
200 for the smallest islands).

3.1 Island morphology

Figure 3a shows the time evolution of the perimeter of a
6250 atoms island at 500 K (E/kBT = 2.3). It is clear that
the shape evolution occurs with rough island borders.

Figure 3b shows the time evolution of the perimeter of
an island containing 6250 atoms at 83 K (E/kBT = 14).
At this temperature facets are apparent throughout the
evolution.

A more precise comparison of the presence of facets at
the two temperatures studied above is given in Figure 4.
It is apparent that facets are present at 83 K, in contrast
to the high rugosity observed at 500 K.

3.2 Dependence of the equilibration time on island size

The continuous analysis of Section 2.2 predicts teq ∼ N2

as a function of the number of atoms N inside the island,
for any temperature. Indeed, the numerical solution of the
full, non-linear equations (2.3, 2.8) appears to agree with
this prediction. Figure 5a shows the size dependence of teq

for different temperatures as given by the simulations. The

(a) (b)

Fig. 3. Time evolution of islands containing 6250 atoms at
500 K (a) and 83 K (b). The initial state corresponds to the
most elongated configuration.

Fig. 4. Large facets are present at 83 K (open circles) in con-
trast with the rugosity observed at 500 K (filled triangles).

simulation results agree with teq ∼ N2 only at high tem-
peratures. Below 250 K, it is clear that teq increases slower
than N2, and the lower the temperature, the smaller the
exponent. One can also notice (Fig. 5b) that the local
exponent for low temperatures approaches 1 for the high-
est island sizes. This is analyzed in Section 4 where we
give an attempt at deriving a scaling relation describing
the two regimes. It should also be noted that extrapolat-
ing the different curves for very high values of the island
size leads to an apparently absurd conclusion: very large
islands do equilibrate faster at lower temperatures. This
is a immediate consequence of the higher size exponents
found for the highest temperatures. To avoid a paradox,
we must admit that there exist a crossover from high to
low temperature behavior for a given size that depends on
the temperature. Therefore, even at 83 K (highest curve),
for large enough islands, one should recover the teq ∼ N2

regime. The scaling analysis presented below explains this
crossover.

3.3 Dependence of the equilibration time
on temperature

Figure 6a shows that teq rapidly increases as temperature
decreases, in roughly the same way for all the island sizes.
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Fig. 5. (a) Size dependence of teq for different temperatures
and (b) local slope of the size dependence (obtained as the
discrete derivative of the teq vs. N curve given in (a): for point
i, it is (log(teq(i+1))−log(teq(i−1)))/(log(N(i+1))−log(N(i−
1))). The local slope remains close to 2 at high temperatures for
all sizes, but it approaches 1 for high sizes at low temperatures.
In (a), the curves have been shifted vertically for clarity. The
precise fits are the following: T = 500 K: teq = 8×10−12N2.00;
T = 250 K: teq = 8× 10−9N1.95; T = 125 K: teq = 0.51N1.52 ;
T = 100 K: teq = 6× 103N1.39; T = 83 K: teq = 9× 107N1.32.

The equilibration time is not exactly a thermally activated
quantity, since there is a clear curvature in its Arrhenius
plots, as shown in Figure 6b: the local activation energies
increase from roughly 0.3 eV at high T to 0.4 eV at low
temperature. This represents respectively 3 and 4 times
the energy needed to break a single bond. A tentative
interpretation of these values is given below in Section 4.

3.4 Precise kinetics of the relaxation

We have seen that the size dependence of the equilibration
time obeys the scaling predicted by the linearized equa-
tions only at high temperatures. It is interesting to check
whether the full solution of equations (2.3, 2.8) agrees
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Fig. 6. (a) Time needed to reach equilibrium as a function of
the temperature for different island sizes. (b) shows the local
activation energy (defined as in Fig. 5) at each temperature.

with the high-temperature behavior of the MC simula-
tions, when no facets are apparent, and the island looks
rough and rather isotropic. Figure 7, where the aspect ra-
tio is plotted as a function of the reduced time t/teq, shows
that no agreement is found, at any of the studied temper-
atures. Indeed, this is a posteriori not surprising, since the
MC results do not seem to obey any scaling relation, or
maybe only at high temperature, and it is then obvious
that the “universal” description given by continuous equa-
tions does not apply. It is nevertheless a little surprising
that the continuous description, which agrees with simula-
tions in the case of a planar surface above the roughening
temperature, does not seem to set a limiting behavior valid
for very large sizes (N → ∞), nor to provide the scaling
form which seems to appear in the simulation results at
high temperatures.

We can think of (at least) three explanations of this
observation. First, it could be argued that this is an ef-
fect of the edge tension. Indeed, in writing the constitutive
equation (2.8) we have assumed that γ is isotropic. This
is clearly not the case in the simulations since we take a
triangular lattice, and the energy of the facets depends
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Fig. 7. Kinetic path followed by the islands as they relax
to equilibrium. The solid line represents the prediction of
Mullins’ equation (2.8) and the different symbols to the relax-
ations obtained in the KMC simulations for islands containing
6250 atoms at the temperatures shown. The dashed line cor-
responds to a smaller island and illustrates the wide range of
relaxation paths observed.

on the orientation. We are currently performing a numeri-
cal integration of equations (2.3, 2.8) including anisotropic
line tension to further investigate this point.

Second, one could question the adequacy of the con-
tinuous treatment to describe the detailed path to equi-
librium, even at high temperatures, for small clusters.
Indeed, one could argue that the macroscopic concepts of
curvature, chemical potential, etc. are not adapted to deal
with nanometric objects containing few (less than 10 000)
particles.

Finally, it is possible that the simulations are not
adapted to agree with the continuous theory, in the sense
that our interatomic potential is too crude to give a rea-
sonable kinetic path to equilibrium. It is clear that the
assumption that the transition probability depends only
on the initial state is not generally correct. As has been
argued above (Sect. 2.1), one would expect such a rough
potential to reproduce a universal exponent (as is observed
for teq ∝ N2 at high temperatures) but not necessarily a
detailed time evolution, if the latter is non-universal.

4 A scaling argument

Our MC results show that two different regimes - at low
and high temperatures - can be identified. At first sight,
this is surprising since the only occurrence that could sep-
arate high from low temperatures is the roughening tran-
sition, which, strictly speaking, takes place at T = 0 K in
2 dimensions — that is, for a one-dimensional “surface”.
However, facets do not disappear suddenly as the temper-
ature is raised from T = 0. Indeed, a “persistence length”
of facets can be defined as the equilibrium value of the dis-
tance between kinks along the step edge. At equilibrium
and at low temperatures, we can consider an “ideal gas”
of kinks, whose density (number of kinks per unit length)

is given by the formula [24]

nkink = 2 exp(−βW )/a (4.1)

where W is the kink creation energy and a the lattice
spacing. Indeed, to form kinks one has to take an atom out
of the step edge, and to place it anywhere along the step.
On a triangular lattice, in doing so one looses 4 nearest-
neighbours bonds, and gains 2. A net balance of 2 broken
bonds results. In the process, 4 kinks have been created
(each atom counts for 2 kinks), so that the energy cost
per kink is

W = E/2. (4.2)

The factor of 2 in (4.1) comes from the fact that kinks
always appear and disappear in pairs — in other words
two types of kinks, positive and negative exist, of equal
number. Then, the equilibrium distance between kinks is

`0 = a exp(βE/2)/2, (4.3)

which diverges as T goes to 0. At a given temperature, a
step looks straight (free from kinks) over lengths of the
order of `0. An island is thus bound to look faceted as
long as `0 is larger than the island linear size L. Then, the
approximate equality

exp(E/(2kBTc)/2 ≈ Lc/a (4.4)

gives the “crossover size” Lc (at fixed temperature) or the
“crossover temperature” Tc (at fixed size) for the crossover
between the high (rough) and low (faceted) temperature
regimes. A comparison with Figure 5b, where the high
temperature regime corresponds to teq ∼ N2, while the
low temperature regime corresponds to teq ∼ N , shows
that this criterion is not too bad: the formula predicts
a crossover temperature for an island of size N = 500
(L ≈ 22) of approximately 240 K, in good agreement with
the simulation data. Note that for smaller sizes than about
N ≈ 100 the simulations do not show a well defined low
temperature behaviour. We attribute this to the large im-
portance of geometric kinks (imposed by the fact that the
step closes on itself) over thermal kinks for these small
sizes. Indeed, we claim that the low temperature regime
is ruled by the equilibration of the spatial distribution of
thermal kinks: the initial shape creates a strongly inho-
mogeneous distribution of these kinks, which then diffuse
to achieve spatial uniformity, and thus equilibrium. Kinks
diffuse by emitting atoms, so that we conclude that atom
emission from kinks is the limiting kinetic step determin-
ing the low temperature behaviour of teq.

Based on this assumption, we can give a scaling argu-
ment that reproduces well the observed teq as a function
of N and T . The argument is similar to that used by
Bales and Zangwill [25] and Pimpinelli et al. [26] to dis-
cuss step roughening and smoothening during growth and
at equilibrium. Indeed, it amounts to performing a lin-
ear stability analysis, and computing the relaxation time
of a perturbation of given amplitude and wavelength. For
sake of clarity, we start from the discussion of the high
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temperature behaviour, which is well-known from Mullins
work.

Physically, we assume that there are two ingredients
determining the relaxation: the thermodynamical “force”
which drives the relaxation (here, the excess curvature)
and second, the kinetic factors which determine the rate
of the equilibration. At all temperatures, curvature effects
are relevant, but we assume that the kinetics change due
to the presence of facets (or, equivalently, to the low con-
centration of kinks). The transition takes place, as stated
above, when `0 ≈ Lc. Here is the mathematical translation
of this idea.

4.1 High temperatures

Let δq be the amplitude of a perturbation of wave
vector q of the island perimeter with respect to the
equilibrium shape. The curvature effect (Gibbs-Thomson)
opposes the increase of the deformation. The rate of de-
crease depends on the appropriate kinetic process which
limits transport of matter from high to low chemical po-
tential regions. Let neq be the equilibrium atom density
along a reference island edge with the equilibrium shape.
Then, at high temperature, a deformation of local curva-
ture K results in an excess chemical potential ∆µ ∼ γq2δq
as in equation (2.6). In turn, this creates an excess atom
density nexc = neq exp[∆µ/(kBT )] ≈ neq[1+Γq2δq], where
Γ = γ/(kBT ). Then, edge atoms flow away from the defor-
mation, whose amplitude decreases at a rate proportional
to the divergence of the mass current:

δ̇q ≈ −
1
τ∗
∇2(nexc − neq) ≈ −neq

τ∗
q2Γq2δq (4.5)

where τ∗ is the typical timescale of the appropriate kinetic
process which is responsible of matter transport.

A more detailed justification of this expression can be
found in Bales and Zangwill [25] and Pimpinelli et al. [26].

Defining the equilibration time teq by writing δ̇q=1/L ≈
−δq=1/L/teq gives

teq ≈ L4 τ∗

neqΓ
≈ N2 τ∗

neqΓ
· (4.6)

Mullins equation is recovered if one assumes that atom
edge diffusion limits the kinetics, so that

1
τ∗
≈ D. (4.7)

The atom equilibrium density can be obtained from the
detailed balance at the kinks: Dneq = νkink, where νkink =
ν0 exp [−3E/(kBT )] is the rate of atom emission from
kinks and Dneq is the atom flux to the kinks [27,28]. Thus,

neq = ν0/D0 exp [−E/(kBT )]. (4.8)

Inserting (4.7) and (4.8) in equation (4.6) yields, in the
limit of high temperatures,

teq ≈
1
Γν0

N2 exp [3E/(kBT )]. (4.9)

This prediction reproduces the teq ∼ N2 scaling of the
continuum theory, and it is in very good agreement with
the simulation results obtained at high temperatures both
for the temperature dependence and for the size depen-
dence (Fig. 5). Indeed, at high temperature the equilibra-
tion time shows an activation energy of approximately 3E
(Figs. 6), and teq behaves ∼ N2 in this regime.

4.2 Low temperatures

The low temperature regime sets in, for a given crystal
size, when the equilibrium distance between kinks be-
comes of the order of the linear size of the crystal, and
straight step portions appear. The (thermal) kink den-
sity then becomes a relevant concept. When the crystal
is deformed from the equilibrium shape, the kink density
is increased where the facets are shrunk, and decreased
where they are streched. On removing the constraint, the
kink density tends to equilibrium and seeks spatial uni-
formity. If the equilibrium facet size is L ≈ N1/2, and
a shape deformation of order δ` is introduced, the kink
density unbalance is approximately δ`/L2. Then, the per-
turbation relaxes as

˙(δ`) ≈ − 1
τ∗∗
× 1

 L2 δ` ≈ −
1
τ∗∗

1
N
δ`. (4.10)

The relaxation proceeds by moving a whole row of atoms
from a short to a long facet; diffusion is fast on facets, and
the process is limited by nucleation of the new row, that
is, by the rate of atom encounters Dn2

eq. Then,

1
τ∗∗
≈ Dn2

eq = ν2
0/D0 exp[−4E/(kBT )]. (4.11)

Inserting (4.11) and (4.8) in equation (4.10) yields, at low
temperatures,

teq ≈
D0

ν0
2
N exp [4E/(kBT )]. (4.12)

Again, the activation energy predicted here is in good
agreement with the low temperature limit observed in the
simulations (Fig. 5). The scaling teq ∼ N is less clearly
seen in the simulations (Figs. 6). However, the simula-
tions show that the lower the temperature, the lower the
size exponent, and if N is not too small, teq ∼ N is consis-
tent with our results. When N is smaller than about 100,
teq seems to increase faster than linearly. At such small
sizes, facets are always very short, and it is likely that an
intermediate behaviour between mass transport and facet
nucleation rules the relaxation.

4.3 Discussion

The scaling argument we propose nicely reproduces the re-
sults of our simulations and leads to a reasonable physical
picture of the equilibration, consistent with the observed
morphologies and kinetics (presence of facets, rapid com-
pletion of atomic rows...).
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Even more, our results can be used to estimate the be-
haviour of the diffusion coefficient of a cluster as a function
of the cluster size N ≈ L2, by means of another scaling
argument. In order to diffuse over a length `, a number
of atoms of order `L have to be transferred from one side
of the island to the opposite side. The time needed to
do this is of the order of the time teq(L) needed to equili-
brate a fluctuation of linear size L and mean square ampli-
tude `2 ≈ L/(βγ) [14]. Therefore, from the knowledge of
teq(L) we can know the diffusion coefficientD(N) from the
Einstein relation

D(N)teq(N) ≈ `2 ∼ N1/2. (4.13)

If we assume that our high-temperature result teq(N) ∼
N2 holds, we find

D(N) ∼ N−3/2. (4.14)

If we assume that our low-temperature result teq(N) ∼ N
holds, we find

D(N) ∼ N−1/2. (4.15)

Equations (4.14, 4.15) can be compared with the results of
the simulations of island diffusion of Metiu and cowork-
ers’: on a (001)-type substrate they find that the size-
dependent diffusion constant D(N) of 2D islands varies
as D(N) ∼ 1/N1.52 at high temperature, and as D(N) ∼
1/N0.62 at low temperature [29]. Of course, different equi-
libration processes would lead to different teq(N)s and
then to different behaviours for D(N). This might explain
the different results obtained by Bogicevic et al. [30] for
islands diffusing on a (111) substrate but with energy bar-
riers for the jumps different from those assumed here.

5 Summary, perspectives

The relaxation to equilibrium of 2D islands containing up
to 20 000 atoms shows unexpected features. Our results
show that there is no “universal” size exponent for island
equilibration, a result similar to that found by Metiu’s
group for island diffusion [30]. We are now studying the
case of 3D clusters to check both the scaling of the equili-
bration time with the size of the particle and the precise
kinetic path followed to reach equilibrium. This is done by
KMC simulations and an analytical approach.

References

1. M. Lagally, Physics Today 46, 24 (1993) and references
therein; H. Gleiter, Nanostructured Materials 1, 1 (1992);
Z. Zhang, M.G. Lagally, Science 276, 377 (1997).

2. http://www.msel.nist.gov/structure/metallurgy/

techactv95/nanostruc.html http://nanoweb.mit.edu/

http://www.eas.asu.edu/ nano/nano2.html
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